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Abstract—In this work we tackle the problem of exploring an
unknown region with a scalar field. We train a variety of agents
to choose samples based on the previous observations. We find
that a variety of agents perform better than random on this task.

I. INTRODUCTION

The overall goal of this work is to simulate an agent
that is trying to map a quantity of interest in an unknown
environment. We are motivated by the problem of a drone
exploring an agricultural field to try to sense specific traits,
for example, the presence of pests. It is possible to plan an
exhaustive trajectory that covers the entire environment, but
this can be expensive in practice. For example, drones have
a limited battery that precludes exhaustive surveys of large
areas. Since many natural phenomena such as pests are heavily
spatially correlated, an intelligent sampling of the environment
can often lead to results that are significantly better than a
naive strategy.

The field of informative path planning deals with this exact
problem of having an agent collect information about an
environment by figuring out where to sample next in an online
manner. A number of approaches have been proposed for IPP
[1, 3], but they are often only evaluated in one environment
and may not translate easily to other domains. They often also
have a number of tunable parameters that must be explored
to give good performance. Finally, existing IPP methods
often require computationally expensive optimizations or tree
searches, which can limit the feasibility for fast-moving agents.
We propose to use reinforcement learning as an approach for
informative path planning. A recent work that applies RL to
IPP is [5] and we will use this as inspiration, though it tackles
the problem differently.

II. ENVIRONMENT

In this work, we are focusing on a simple environment that
we designed from the ground up during previous research. It
is not meant to be fully realistic, but rather serve as a testbed
that we can use to generate intuitions for the real world.

A. World

We represent our simplified world as a 2D plane that we
wish to explore. On this plane, we have a continuous function
that represents some quantity of interest, like the degree of
pest infestation. The goal of our toy example is to mimic the
spatial correlations that are common in natural phenomena.
One way to generate this map is to use a mixture of gaussians
to represent the density of some quantity of interest. We begin

Fig. 1. Sum of four randomly-selected Gaussian maps. This is one example
of an environment we are trying to explore.

by choosing a number of gaussians to use. In this case, we
use four. Then, for each gaussian, we sample a mean within
the bounds of the world and axis-aligned variances uniformly
between an upper and lower range. In this case we used a
20x20 unit world and the gaussian axis variances were sampled
between 3 and 15. After creating each guassian PDF with the
appropriate mean and variance, we sum these PDFs and use
min-max normalization so the map is between 0 and 1. Then
a scaling and shifting is applied, so the values are between 0.5
and 1, which improves learning later one. An example map
can be seen in Figure 1.

B. Agent and Action Space

In our simplified problem, our agent represents the drone
and its x and y coordinates are the location of the drone in
2D space. In our baseline approach, the action space of the
agent is discrete. We represent the world by divided it into
an NxN grid where N is a controllable parameter by the user.
At each step, the agent is free to move to any position in the
world on this NxN grid. Once it moves, it samples the value of
the environment at the location. The represents the measuring
of the value of the scalar field at the location of interest. We
assume that both the measurement value and the position are
free from noise, however our code supports introducing noise
into these measurements if desired.

C. Episodes

We consider our episode to run for a fixed number of
timesteps. This represents the situation where a drone’s battery
limits the flight duration. Given the agent can move to any
discretized location in the world at each step, we understand
this is not a true representation as travelling larger distances



requires more time and effort. Therefore, in the future we will
adjust the episode length to consider distance travelled.

D. Belief Modeling and Observation Space

The overall goal of our agent is to model the world with a
limited number of samples. In our initial attempt, we sought
to model locations which we had not visited using Gaus-
sian Process regression, as is common in the IPP literature.
However, after initial experimentation, we found this was too
computationally expensive to be feasible in the inner loop
of the training procedure. Therefore, we reverted to a simple
model of the environment. The observation space is discretized
into an MxM grid and each location has a mean and variance,
where M is a user-controlled parameter. M was configured
to be the same as N, although our code supports using
different values. The reason we chose this implementation
was so the agent can effectively observe each grid cell it
can move to. Once the agent moves to a new cell on the
grid, the variance of that cell is reduced from 1 to 0. The
mean is also updated according to the update belief model
as discussed in Section II-E. A more complex model could
be considered in the case of sensor noise or more complex
prior beliefs about the distribution, but we found this sufficient
for initial experiments. For more-effective model training, the
observation space outputs are scaled and clipped to lie in the
range of [-1, 1].

E. Processing Observations

We wish to give the agent information about the previous
samples it has observed, so it can choose where to go next.
Rather than providing the raw samples to the agent, we use
our belief model as an intermediate representation to simplify
the problem. We update our belief model every time a new
sample is drawn, and feed the agent a grid sampled from it
covering the whole world.

This simplifies our observation to something that can be
thought of as a two-channel image, one representing the
predicted mean of our scalar field and the other representing
the predicted variance. Since the observation is always cen-
tered around the agent, we do not need to encode the global
position, since we assume that we can only reason on this
local neighbor. Exactly how large this context should be is a
design decision we will need to address experimentally.

Note that in deployment, this belief model would be main-
tained by the agent. However, for implementation reasons, it is
part of the environment. This is because, in addition to being
used to generate the observation, the belief model is used to
compute the reward. Since the environment handles the reward
computation in the gym abstraction, the belief model must be
part of the environment.

III. REWARD FUNCTION

At a high level, we want our agent to learn policies that
allow it to plan a trajectory that samples informative regions
of the environment. The end goal is to have a predicted map
that matches the real map. This can be measured by sampling

a grid of points from both the real and predicted maps and
taking the mean squared error between the samples.

An additional consideration we introduce is that the agent
should prioritize regions with a high value. This models
a situation where something in your environment is more
interesting than another part. Going back to our motivating
example, it is more important to accurately assess the presence
of pests in a heavily infested region than in a lightly infested
one.

A simple approach was proposed by Popovic et al [3], where
they only consider the mean squared error on the 40% of
the ground truth map that has the highest values. We began
with this approach, but realized that it was unneeded in our
setting. Because we have a prior belief that every cell has a
value of zero, we reduce our error more by sampling a new
high-valued cell than a low-valued one. The discussion of the
thresholded reward function is provided for completeness, but
we can consider this threshold to be set at evaluating 100%
of points.

To formalize our reward function, consider X to be a dense
set of 2D points sampled from our environment. The number
of sampled points in X is greater than M and N used to sample
the action and observation space. We will evaluate the quality
of our predictions at these points. Let y be the vector of ground
truth values corresponding to our map at these locations. Our
predicted values are taken from our belief model at the same
locations, ŷ = B(θ,X), where θ is the parameters of the belief
model.

The overall loss of our prediction can be assessed as follows

L = ||ŷ − y|| (1)

More explicitly, this can be noted as

L = ||B(θ,X)− y|| (2)

To give our agent more feedback, we consider our loss to be
incremental rather than episodic. Therefore, our reward is the
amount that our prediction on the areas of interest improves
due to the most recent action. If we index the belief model
parameters by timestep as θt, the reward for the tth timestep
is

Rt = −[||B(θt, X)− y|| − ||GP (θt−1, X)− y||] (3)

More compactly, this is

Rt = −[||ŷt − y|| − ||ŷt−1 − y||] (4)

Note the leading negative because the reward is the negative
of our cost.

IV. METHODS

A. On-policy Policy-gradient RL:
For our on-policy gradient algorithm, we utilize PPO as it

is a state of the art approach very commonly used in practice.
While one of the benefits of gradient-based are that they
require fewer hyperparameters to tune, this comes at a cost
of sample efficiency. However, we designed our world model
and observation space to allow for fast sampling to allow for
PPO to learn a policy within a reasonable number of rollouts.



B. Off-policy Q-function-based RL:

For our off-policy gradient algorithm, we use DQN. This is
because it is simple and supports our discretized action space
as input.

C. Model-based RL:

For our model-based RL implementation, we train a network
to predict state changes given observation-action inputs. At
runtime, the agent samples actions and passes them to the
network along with the current observation to determine the
action that leads to the most optimal next state. Because there
is no access the ground-truth map at runtime, we cannot use
the reward to determine the best action. Instead, we use a
pseudo-reward of

PRt
=

1

M2

M−1∑
y=0

M−1∑
x=0

u(y, x)− σ2(y, x) (5)

where u and σ2 are the mean and variance values of the
predicted next state’s observation. This is because we want
to reach states with higher values and lower variances. The
sampled action that leads to the next state with the highest
pseudo-reward is selected.

D. Modification 1: Behavioural Cloning and DAgger from
expert:

For our first modification, we would like to use Behaviour
Cloning and DAgger to reproduce behaviour demonstrated by
an expert. Our expert, which we denote as the Perfect agent,
has full knowledge about the environment, and can always
determine the next best location to move to. As a result, for
each action the expert takes, the maximum possible reward is
returned, and the final predicted map is as close to ground-
truth as possible. The Perfect agent’s performance is an upper
bound on any other agent that acts in the environment.

We train both Behavioural Cloning and DAgger agents using
observation-action pairs produced by the Perfect Agent. We
suspect the Behavioural Cloning will not be successful. This
is because of the wide distribution of observations, especially
in the initial states, that will result in the Behavioural Cloning
agent to perform poorly early on and from which it will
be unable to recover. However, with the ability to query
demonstrations from the expert online, we suspect that DAgger
should be able to perform reasonably well.

E. Modification 2: Continuous Action Spaces

While our discretized action space approach simplifies the
problem, it does not truly represent the real world. For
example, a drone is not limited to traveling to only a fixed set
of grid locations, but should be able to fly to any location of
choice. As a result we explore the performance of continuous
action spaces. We use the policy to learn the exact horizontal
and vertical world coordinates the agent should to move to.
To achieve this, we adapt our model-based design to work in
the continuous space.

For model-free methods, it required a fair bit of experimen-
tation and hyperparameter tuning to find an algorithm that
would work in the continuous space. We tried PPO, SAC, and
DDPG, all with no success. Eventually, we were able to get
an implementation of TD3 to learn with a continuous action
space. DQN was not evaluated as it only support discrete
action spaces.

For our continuous action space implementation, actions
outputted by the networks were scaled between [-1, 1] and
unscaled inside the environment.

F. Other modifications

There are other modifications that we would potentially like
to explore, time permitting. These include different observa-
tion space encodings, removing the need for ground truth by
designing a reward function using information gain, extending
our environment into 3D, and introducing a cost of movement
or time of flight.

V. EXPERIMENTS AND RESULTS

A. Training Details

1) PPO: To train PPO, we used Stable-Baselines3
[4]. The selected network architecture was their default
MLPPolicy to which we passed our flattened observation
space. The default hyperparameters from https://stable-
baselines3.readthedocs.io/en/master/modules/ppo.html were
used. The network was trained for 300000 steps.

2) DQN: Stable-Baselines3 was also used to train
DQN. Once again, we used the default MLPPolicy.
Hyperparameter tuning for DQN required signifcantly
more effort to get reasonable results compared to PPO,
which is expected for Q-function-based algorithms. We
ended up using the hyperparameters from https://stable-
baselines3.readthedocs.io/en/master/modules/dqn.html, with
the following modifications:

• learning starts: 10000
• batch size: 128
• target update interval: 250
• exploration fraction: 0.2
• exploration final eps: 0.1
• tau: 0.01

The network was trained for 100000 steps.
3) TD3: TD3 was also trained using Stable-

Baselines3 with the default MLPPolicy. Hyparparameter
tuning was quite involved. Our final implementation
used the hyperparameters from https://stable-
baselines3.readthedocs.io/en/master/modules/td3.html along
with the following modifications:

• learning rate: 5e-4
• buffer size: 10000
• learning starts: 10000
• batch size: 128
• tau: 0.01

The network was trained for 300000 steps.



4) Model-Based RL: We implemented our own model-
based RL training framework with code inspired from hw4.
The network was a 5-layer MLP with hidden-layer size of 256.
The input to the network was the observation and action spaces
described in Section II and the output was the predicted delta
in observation space. Unlike in hw4, we did not normalize
the inputs to the network because they observation and action
spaces were already scaled to within a reasonable range and
we saw no noticeable effect on performance. To train the
network, the agent acted randomly in the environment and
the observation, action, and next observations were recorded
in a replay buffer. The discrete and continuous networks were
trained for 40 iterations, where each iteration ran 10000 steps
and used 1000 gradient updates per iteration with samples
selected from the replay buffer.

During runtime, the trained model was used to determine
the best action. The way this was acheived depending if a
discrete or continuous action space was used. For the discrete
case, all actions were evaluated and the action that led to
the predicted next state with the highest pseudo-reward as
described in IV-C was selected. For the continuous case, 5000
random actions were sampled, and similarly the action that
resulted in the highest pseudo-reward state was chosen. In the
future we would like to explore longer planning horizons.

5) Behavioural Cloning: For behavioural cloning, we used
the imitation [2] library. We collected a rollout of size 50000
from the expert policy and the network was trained for 100
epochs with a batch size of 256.

6) DAgger: For DAgger, we once again used the imitation
library. Itaratively, rollouts of step size 2000 were collected by
the expert and performed 100 gradient updates per iterations
with a batch size of 256. A total of 10000 steps were
performed by the expert policy.

B. Experiments

All experiments have a world size of 20 continuous spaced
units and a discretized observation space of 7x7. For the
discretized action space environmetns, the action space is
divided into a 7x7 grid. The number of actions per episode
is fixed at 20, just under 50% of the size of the action space.
This was chosen because we felt a learned agent should be
able to learn more about the world when exploring just under
half of it compared to a random agent. We also compare the
performance of each agent against a random agent, which
randomly selects actions from a uniform distribution. We run
100 episodes for each agent and average the results across all
experiments.

We provide results on the average reward per step and the
map error represented in Eq. 2. We report both because the
reward is what is used to train the PPO and DQN agents,
but the minimizing the map error is the overall objective.
Because our reward is incremental, if a learned agent explores
efficiently early on then the rewards are expected to decrease
over time, as shown by the Perfect Agent in Fig. 4. In such a
case it is possible for the random agent to have higher rewards

Fig. 2. Rewards for base methods averaged over 100 trials versus iterations.
All methods perform better than the random baseline.

Fig. 3. Map errors per iteration for base methods averaged over 100 iterations.

near the end of the episode. However, a learned agent should
have a lower map error by the end of training.

We also report the distribution of all final map errors in Fig.
8 and Fig. 9.

C. Results

1) Base Method Experiments : We evaluate the perfor-
mance of our PPO agent, DQN agent, and model-based (MB)
agent, in addition to the random agent. The averaged rewards
and map errors across the 100 runs can be seen in Fig. 2 and
Fig. 3.

All three of our learned agents outperform the random agent
in terms of both average reward and average map error. The
DQN agent performs the best, while our PPO and model-
based agents perform quite similarly. One reason for this
could be because a lot more effort went in to tuning the
DQN hyperparameters compared to the PPO and model-based



Fig. 4. Rewards for the model-based agents.

agents. It is important to note that at the end of the episodes
DQN has a lower reward than PPO and model-based. This is
because it has learned more about the world and there is less
incremental reward to improve upon, which is indicated by the
lower map error.

As shown in Fig. 8, the PPO, DQN, and model-based agents
had similar error distributions. DQN actually had a wider
distribution, despite producing the best averaged results. If a
minimum performance threshold is required, PPO or model-
based would may more desired alternatives.

2) Modification 1: Behavioural Cloning and DAgger: We
compare the performance of our Behavioural Cloning (BC)
and DAgger (DA) agents against the random agent. We also
provide the results for the Perfect Agent to demonstrate the
upper and lower bounds of reward and map error. The results
can be seen in Fig. 4 and 5.

As expected and described in IV-D, the Behavioural Cloning
is unable to effectively learn and performs as well as the
random agent. This is because of its inability to recover
from error in new environments that have data outside of the
distribution it was trained out. DAgger, on the other hand, is
able to outperform the random agent. This is because during
training it was able to query behaviour from the Perfect Agent.
The DAgger agent does not perform as well as the agents in
V-C1.

As seen in Fig. 8, DAgger has a similar distribution range
to the base methods but with a higher mean final map error.
Behavioural Cloning has a similar map error distribution to the
random agent, with a smaller standard deviation. As expected,
the perfect agent has the lowest mean and narrowest final map
error distribution.

3) Modification 2: Continuous Action Spaces: We run our
continuous model-based agent and TD3 agent and compare
the performance to the random agent. The results can be seen
in Fig. 6 and 7.

Our model-based agent and TD3 agent both outperform the

Fig. 5. Final map errors for the model-based agents over 100 iterations.
Note that a perfect agent is presented to show the maximum possible values.
DAGGER performs slightly better than random, while Behavior Cloning fails
to learn.

Fig. 6. Rewards for the agents on the continuous environment. TD3 does
well until the last few iterations when performance stagnates. The model-
based agent does consistently better than random.

random agent. While the random agent has higher rewards
near the end of the episode than the TD3 agent, this is because
of the incremental rewards as TD3 is still able to achieve a
lower final map error. What is interesting is the model-based
agent achieves a higher final map error with a continuous
action space compared to a discretized one, which are 38.3 and
36.7 respectively. As well, TD3 had higher final map errors
compared to the PPO, DQN, and DAgger experiments. This
suggests that there is value to discritizing the action space and
limiting the range of possible actions. This could be because it
enables the network to better generalize and learn. This makes
us curious to explore how performance varies when modifying
the discretization of the action space to larger and smaller
sizes.



Fig. 7. Final map errors for the agents on the continuous environment.

As demonstrated in Fig. 9, the continuous model-based
agent has a lower averaged final map error but a wider dis-
tribution compared to TD3. The relationship is similar to that
of the TD3 agent and the random agent. Directly comparing
Fig. 8 and Fig. 9, the discrete agents have smaller mean and
narrower error distributions compared to the continuous agents
(apart from the behavioural cloning agent).

D. Conclusion

For this project, we simulated a drone navigating a sim-
plified 2D world with the objective of collecting as much
meaningful information from the world as possible. We
demonstrated that a variety of reinforcement learning-based
approaches outperform taking random actions. These ap-
proaches include policy gradient-based, q-value based, and
model-based. As well, we showed that imitiation learning with
DAgger also provides improved results, as well as utilizing
both discretized and continuous action spaces. In the end,
DQN with a discretized action space achieved the best results.
One open question that remains is if DQN is the optimal
approach, or if dedicating more time to tuning hyperameters
and training other implementation could result in greater
improvements.

E. Future Work

Our next step is to understand what the agent is learning.
In Figure 10, we show the final map result from a PPO
agent. It seems like it may have done well either because
it explored near other high-value regions, avoided sampling
regions multiple times, or tended toward the center, where
reward will be expected to be higher. Teasing apart these
considerations will help us extend this work to more complex
environments.

We would also like to add cost to movement to make
navigating more realistic. In the real-world, a drone cannot
simply travel far distances as easily as shorter ones. We could

Fig. 8. Final errors for the discrete agents.

Fig. 9. Final errors for the continuous agents.

achieve this by either adding a cost of movement or termi-
nating the episode after a certain distance has been travelled.
Alternatively, instead of allowing the agent to move anywhere,
we could restrict it to moving within a certain distance per
step. This would lead to additional interesting implementations
as horizon planning would have to be considered.

Other ideas we have include integrating sensor noise to
make sampling more representative of the real-world, and in-
corporating interpolation of known sensor measurements into
our predictions, which we think will reduce final if integrated
properly, with the cost of adding difficulty of learning how to
reason about the observation space.

Lastly, we would like to add temporal reasoning into our
learned policies, which we can implement by utilizing consec-
utive observations.



Fig. 10. A qualitative result from PPO.

F. Video Links

Videos can be found here: https://drive.google.com/drive/
folders/1fTVB4RdCZFvNKls3c6dHxlpkzdnKyZ2K
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