
Sparse View Mesh Reconstruction of Plants

Harry Freeman (hfreeman), Gerard Maggiolino (gmaggiol), and David Russell (davidrus)
Carnegie Mellon University

May 6th, 2022

1 Introduction

3D models of plants can be used to address a variety of problems in agriculture. Plant breeding programs are
quickly adopting high-throughput phenotyping as an important step in informing the selection of the next
generation [1]. This replaces laborious manual measurements which often prevent the whole plot from being
surveyed, forcing decisions under greater uncertainty. Some factors, such as the leaf color, are relatively easy
to assess from a single viewpoint. Others, such as the angle of a leaf to a stem or the surface area of a leaf,
require explicit 3D reasoning. As described in [2], watertight meshes are important for many applications
such as characterizing leaf area or plant volume or integration into existing agricultural simulation platforms.
To the best of our knowledge, all prior approaches to this problem rely either on images which surround the
plant in a controlled environment or active sensing such as Lidar to obtain high-fidelity results.

In this work, we attempted to produce an accurate, watertight, and structurally-plausible mesh from
sparse posed viewpoints of a plant. We did this by using neural surface reconstruction to reconstruct a mesh
from sparse 2D images. In addition, we made our method generalizable by utilizing state of the art meta-
learning techniques in order to create meshes for other crops with a small number of training images. This is
a step toward generating high quality meshes in unstructured fields where highly controlled data collection
is impractical. This capability can assist high-throughput phenotyping which can improve data-driven crop
breeding outcomes for agricultural management.

2 Background

2.1 NeuS

NeuS [3] is a state of the art learning-based 3D reconstruction technique. It leverages the insight that most
objects in the world can be represented by opaque surfaces rather than generic volumetric fields. Therefore,
they parameterize an signed distances function (SDF) using an multilayer perceptron and extract the final
surface as the 0 level-set of this function. This SDF, along with a color field, is optimized with differentiable
rendering to match the colors from precicely posed images. A primary contribution of this work is a new
volume rendering function which eliminates systematic bias which caused previous approaches to either
over- or underestimate the 0 level set. The authors state that their approach can reconstruct well even with
sparse viewpoints, which is likely improved by the strong regularization the continuous surface representation
provides.

2.2 Reptile and Meta-NeRF

Tancik et al. [4] use the Reptile [5] meta-learning algorithm to obtain initial meta-weights over a number
of independent reconstruction cases. These meta-weights enable single or sparse-view reconstruction with
a limited number of iterations for any particular case of the same semantic category. We describe a batch
version of Reptile in the context of NeuS [3] and provide pseudo-code (Algorithm 1).

Sub-processes are handed a reconstruction case to perform M iterations of NeuS optimization, initialized
from the current meta-weights. The resulting weights from each case are averaged and their difference
with the current meta-weights is taken as a gradient. This gradient can be scaled and subtracted from the



meta-weights to perform SGD, but [4] finds Adam [6] optimization substantially improves performance. In
contrast to MAML [7] which is limited to 3-4 inner loop iterations, Reptile is a first-order method with no
inherent computational constraint on the number of internal steps.

Algorithm 1 Synchronized Batch-Based Reptile with NeuS

1: Φ← randomly as meta-weights
2: N ← as outer loop iterations
3: M ← as inner loop iterations
4: B ← as number of parallel processes
5: for n = 1, 2, . . . , N do
6: Sample B reconstruction cases
7: Initialize B cases with Φn, run each for M NeuS iterations producing Wi for i = 1, . . . B
8: ∇Φn = Φn − 1

B

∑B
i Wi

9: Produce Φn+1 with ∇Φn using Adam
10: end for

Although Reptile is simple in theory, it’s empirically sensitive to the choice of hyper-parameters within
both loops. For example, while NerF [8] uses Adam and a moderate learning rate of 5e-4, [4] finds that
vanilla SGD with an LR of 1 to 1e-1 performs best for inner loop optimization, depending on the dataset.
More details of specific hyper-parameters chosen for NeuS optimization are given in the experiments section.

3 Experiments

3.1 Data

In this work we initially used the UNL-3DPPD [9] dataset which contained a large number of Maize and
Sorghum plants imaged from ten viewpoints on a turntable. We were interested in this dataset because
all the plants we very similar which would be an ideal situation to leverage meta learning. However, we
found this dataset was challenging to work with because of imprecise calibration parameters and the limited
number of viewpoints.

Therefore, we transitioned to the recently-released Common Objects in 3D (CO3D) dataset [10] , specifi-
cally the plant category. The authors collected this in-the-wild dataset from Amazon Turk, where they paid
participants to record and object with a smartphone from a circular set of viewpoints. They run COLMAP
on this data to produce intrinsic and extrinsic calibration and a sparse pointcloud. Additionally, they com-
pute an approximate foreground mask which highlights the object. There are 571 instances of plants, and
each one contains approximately 100 images.

3.2 Standard NeuS Training

To train NeuS we first needed to convert the CO3D dataset into the format that it required. We produced
projection matrices from the data contained in the CO3D dataset. NeuS additionally required a scale matrix
which made the object lie within a unit sphere. We obtained this scale factor from the noisy COLMAP
pointclouds by the following heuristic: we assumed that the bounding sphere was 1.2 times the 95th percentile
radius.

We then trained NueS using the default parameter values, except we trained for significantly fewer
iterations than the default 300,000. Even on an NVIDIA RTX A6000, a single scene took approximately
eight hours, and we thus limited iterations to 20,000 for standard training on all views, and 10,000 for
standard and meta-initialized training on sparse views. We found this produced acceptable results and
moderately low loss.

3.3 Sparse View Study

As described, CO3D gives us data rich reconstruction cases with 100+ images per plant. We evaluate sparse
cases by reducing the number of images available for reconstruction to 30 and 10 views. For both cases the

2



Figure 1: Reconstructions from NeuS trained on all viewpoints. Ground-truth point cloud (left) and ex-
tracted surface (right) from two views for three different plants.

views used were randomly sampled. We evaluate a number of plant reconstruction cases on the full (100+),
30, and 10 image views, and report statistics over each for random and meta-initialized weights.

3.4 Meta Learning

To perform meta-learning we follow the Reptile [5] approach, using parameters described in [4] with several
exceptions. Notably, [4] trains NeRF for 100,000 outer loop iterations. Their inner loop uses 32 steps for
ShapeNet and 64 steps for Phototourism with an SGD optimizer and learning rates from 1 to 0.1, up to 1e5
times greater than the original reconstruction method of NeRF.

NeuS is trained similarly to NeRF with Adam and an LR of 5e-4, but with a warmup period of 5,000
iterations and cosine scheduler. We find that using Meta-NeRF’s SGD inner loop LRs of 1 to 0.1 results in
severe instability and a complete lack of convergence. We use a reduced inner loop LR of 1e-2. We find that
a single iteration of 64 steps takes approximately 8.5 seconds on an NVIDIA RTX A6000 GPU, indicating
100,000 outer loop iterations would take on the order of 200+ hours.

To speed up meta-training, we hand implement a parallelized batch version of Reptile, described in Algo-
rithm 1. We initialize B sub-processes, each with their own GPU. A main process distributes reconstruction
cases and places meta-weights into shared memory. Sub-processes initialize using the meta-weights, run the
inner loop on their respective cases for 64 steps, and return the resulting weights. The main process then
aggregates these weights, performs an update, and places the refreshed meta-weights into shared memory.
Each sub-process has additional helper threads which setup and queue the next cases.

In contrast to Meta-NeRF, which uses an outer loop batch size of one case (B = 1), we scale up the
outer loop LR near linearly [11] to the batch size to 5e-3 and are able to train with stability. Due to
careful multiprocessing implementation, batched iterations have a negligible slowdown compared to single
case updates.

We train Reptile as described across 20 plant cases for 4,000 iterations with B = 8 on 8x NVIDIA
V100 GPUs, taking approximately 9 hours to complete. From the resulting meta-weights, held-out cases are
trained in the standard NeuS matter for 10,000 iterations - this is in contrary to the procedure described
in Meta-NeRF which applies the same inner loop optimization (SGD and LR of 1) for 1,000 iterations. We
were unable to obtain strong results with the Meta-NeRF fine-tuning, which may be a consequence of our
shorter training time or the general instability of NeuS at higher LRs.

4 Results

4.1 All Viewpoints

We first evaluate the performance of standard NeuS training using all viewpoints. Qualitative results of
the meshes along with the ground-truth point clouds can be seen in Figure 1 from two different viewpoints.

3



Figure 2: Loss comparison between normal training and meta-weight initialized training

The meshes clearly resemble the coarse components of the plants. However, there is difficulty in accurately
representing the thin-dense structures, as seen in the third example on the right. Two possible reasons for
this are the number of rays casted when training the SDF, as well as the resolution of the SDF-generated
voxel grid for mesh reconstruction with marching cubes.

4.2 Sparse Viewpoints

Next, we compare the performance of NeuS training on a the sparse set of viewpoints, with and without
meta-initialized weights. Training proceeds for 10,000 iterations - PSNR and total loss over this period
can be seen in 2. Meta-initialized weights outperform the random initialization throughout the entirety of
training. Qualitative results from two different viewpoints can be seen in Figure 3 and Figure 4. The first
observation is that there is noticeable deterioration in the outputted meshes compared to training on a full set
of viewpoints. This is expected as the number of viewpoints were reduced by two and ten times respectively.
As well, the the full set of viewpoints were trained for twice the number of iterations. The more interesting
result, however, is that the meta-initalized NeuS method significantly outperforms standard NeuS. For the
first plant on the left, The standard NeuS extracted meshes do not resemble the correct structure at all,
whereas the meta-inialized extracted meshes represent the coarse shape. For the second plant on the right,
the meta-initialized result better captures both the coarse shape and the finer irregular surfaces of the upper
plant section.

What is also interesting is that for the meta-initialized weights, there is little visual difference between
using 30 vs 10 viewpoints, specifically for the first plant on the left. This demonstrates the future effectiveness
of this method in agricultural applications where only a small number of viewpoints are accessible.

Further results using 10 viewpoints with meta-learning can be seen in 5. Again, the coarse structure
of each plant is well-captured, where some of the finer details are missing. However, these outputs my be
sufficient for common agricultural tasks such as volume estimation, sizing, and yield estimation. We also note
that these meta-learned results are obtained with significantly less compute than the original papers, and loss
continued to drop beyond the first and only 10 hours of batched meta-training. We believe it is reasonable
to assume that meta-training over the entirety of plant cases in CO3D (approximately 500) and training for
at least the full 100,000 outer loop iterations as described in Meta-NeRF would create meta-weights that are
substantially more representative than our obtained weights.

4.3 Unseen View Synthesis

In addition to evaluating the quality of the mesh reconstructions, we also explored this representations
ability to perform novel view synthesis. We trained models using the 10, 30, and full splits from random
initialization learning and the 10 and 30 splits with meta learning initialization.

4



Figure 3: Reconstructions from NeuS trained on 30 viewpoints. Ground-truth point cloud (left), and ex-
tracted standard NeuS surface (middle), and extracted meta-initialized NeuS surface (right) from two views
for two different plants

Figure 4: Reconstructions from NeuS trained on 10 viewpoints. Ground-truth point cloud (left), and ex-
tracted standard NeuS surface (middle), and extracted meta-initialized NeuS surface (right) from two views
for two different plants

5



Figure 5: Multiple scenes reconstructed from ten views using meta-learning. Note that the far left instance
was seen during meta learning training.

(a) Ground truth (b) 10 views (c) 10 views, with meta

(d) All views (e) 30 views (f) 30 views, with meta

Figure 6: Unseen view synthesis for plant1. Note that meta learning improves the results specifically for (f)
versus (e), where the leaves are much sharper and the center leaf is properly captured.

6



(a) Ground truth (b) 10 views (c) 10 views, with meta

(d) All views (e) 30 views (f) 30 views, with meta

Figure 7: Unseen view synthesis for plant2. Even the reconstruction with all viewpoints fails, likely due
to the thing structures. Meta learning is especially useful in the (c) where it allows the network to begin
picking out some structure in the plant.

To evaluate the quality of these reconstructions, we render an image from a camera which was not seen
during training and compare the result to the real image. The results of this can be seen for two different
plants in Figure 6 (plant1 ) and Figure 7 (plant2 ).

Note that plant1 is fairly well represented from a novel viewpoint while plant2 is very blurry. This is likely
because the former has much less detail and a lower resolution then the later. In both cases, meta-learning
made the images sharper and produced results which better captured the structure of the leaves.

5 Conclusion

We explore the problem of reconstructing mesh representations of plants from sparse viewpoints. We leverage
the insight that class-level priors should speed up the reconstruction process and make it more robust
to sparse viewpoints. Both of these attributes are beneficial for in-the-wild deployment of learning-based
reconstruction. To test this hypothesis, we implement a meta-learning approach which learns an initialization
that is well-suited to a variety of tasks. We effectively demonstrate that meta learning does improve the
quality of these reconstructions. In the future, we hope to provide more quantitative results using the
Chamfer distance of the extracted mesh and the PSNR of novel synthesized views. We provide our data
processing scripts 1 and metalearning implementation 2 to facilitate future work in this direction.

1https://github.com/russelldj/leaf_reconstruction
2https://github.com/hfreecmu/NeuS

7

https://github.com/russelldj/leaf_reconstruction
https://github.com/hfreecmu/NeuS


References

[1] Eric Rodene et al. “A UAV-based high-throughput phenotyping approach to assess time-series nitrogen
responses and identify trait-associated genetic components in maize”. In: The Plant Phenome Journal
5.1 (2022), e20030.

[2] Anjana Deva Prasad et al. “Deep implicit surface reconstruction of 3D plant geometry from point
cloud”. In: AI for Agriculture and Food Systems. 2021.

[3] Peng Wang et al. “Neus: Learning neural implicit surfaces by volume rendering for multi-view recon-
struction”. In: arXiv preprint arXiv:2106.10689 (2021).

[4] Matthew Tancik et al. “Learned initializations for optimizing coordinate-based neural representations”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021,
pp. 2846–2855.

[5] Alex Nichol, Joshua Achiam, and John Schulman. “On first-order meta-learning algorithms”. In: arXiv
preprint arXiv:1803.02999 (2018).

[6] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In: arXiv preprint
arXiv:1412.6980 (2014).

[7] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-agnostic meta-learning for fast adaptation of
deep networks”. In: International conference on machine learning. PMLR. 2017, pp. 1126–1135.

[8] Ben Mildenhall et al. “Nerf: Representing scenes as neural radiance fields for view synthesis”. In:
European conference on computer vision. Springer. 2020, pp. 405–421.

[9] Sruti Das Choudhury et al. “Leveraging Image Analysis to Compute 3D Plant Phenotypes Based on
Voxel-Grid Plant Reconstruction”. In: Frontiers in Plant Science 11.December (2020), pp. 1–18. issn:
1664462X. doi: 10.3389/fpls.2020.521431.

[10] Jeremy Reizenstein et al. “Common Objects in 3D: Large-Scale Learning and Evaluation of Real-life
3D Category Reconstruction”. In: International Conference on Computer Vision. 2021.

[11] Priya Goyal et al. “Accurate, large minibatch sgd: Training imagenet in 1 hour”. In: arXiv preprint
arXiv:1706.02677 (2017).

8

https://doi.org/10.3389/fpls.2020.521431

	Introduction
	Background
	NeuS
	Reptile and Meta-NeRF

	Experiments
	Data
	Standard NeuS Training
	Sparse View Study
	Meta Learning

	Results
	All Viewpoints
	Sparse Viewpoints
	Unseen View Synthesis

	Conclusion

