
Final Report:
Learning a Unified Policy for Locomotion with Eye-in-Hand Perception

Harry Freeman and Paul Nadan

I. INTRODUCTION

Mobile robotics lies at the intersection of three com-
ponents: perception, manipulation, and locomotion. Much
research has been done on the intersections of each pair
of these components. Cameras attached to manipulators are
used for eye-in-hand perception, which provides a close-up
view that follows the object being manipulated. Cameras
can also be attached to mobile robots to enable egocentric
vision, allowing the robot to see and avoid obstacles as it
moves. Finally, whole-body control is used to jointly carry
out locomotion and manipulation on a single platform. In
each case, coupling two different components can provide
greater capabilities than using each in isolation. However, we
believe that robots will ultimately need to rely on all three
of these components at the same time in order to accomplish
more complex tasks.

In this project, we hope to investigate the intersection of
vision, locomotion, and manipulation. To do so, we consider
a mobile robot with a camera mounted at the end of a mobile
arm, tasked with tracking and approaching a visual target
while avoiding obstacles. This task is challenging because the
robot must keep the target in view and maintain a proximal
distance to it, which requires simultaneously controlling the
mobile arm to orient the camera and the legs to move towards
the target. While a decoupled policy for each sub-task could
likely achieve a reasonable level of performance, we hope
to demonstrate that a unified policy for both locomotion and
camera manipulation could lead to new useful behaviors and
superior performance overall. We hope this will ultimately
allow mobile robots to perform more complex tasks that
require all three of locomotion, manipulation, and vision.

II. PRIOR WORK

Mobile robots typically rely on a camera or another
perceptive sensor that is fixed to the robot’s body. With well-
chosen camera placement, such a robot can have a clear
view of the ground ahead, but a fixed placement can limit its
awareness of its surroundings. For instance, [1] presents an
end-to-end learned policy for a quadruped robot with a body-
mounted camera. To avoid the computational costs of camera
rendering during training, they instead provide their policy
a height-map of the terrain. Once training has finished, they
then apply a supervised learning approach to recondition the
policy to use the raw camera image.

In contrast, robotic arms with cameras on the end effector
(the “eye-in-hand” configuration) have been used for a wide
range of tasks, such as surgery [2] and agriculture [3]. A
technique called visual servoing [4] creates a feedback loop

between the camera and manipulator to align or track a target
in the camera view.

Finally, many researchers have integrated robotic arms
with quadruped robots. In [5], such a robot is controlled
using a whole-body hierarchical quadratic programming
(HQP) approach during stationary manipulation tasks, but the
authors resort to a decoupled strategy for the arm and legs
during loco-manipulation. In contrast, [6] trains a joint policy
to achieve both tasks using a technique called advantage
mixing, where the manipulation and locomotion rewards are
initially decoupled but converge as training progresses.

III. APPROACH

A. Mobile Robot

The mobile robot we constructed for our simulated exper-
iments is a legged robot mounted with a mobile arm. The
urdf we use for the legged robot is the 12 DoF ANYmal
[7] quadruped, and the urdf for the arm is a 6 DoF wx250s
from Interbotix Ros Manipulators [8]. The base of the arm
is attached to the base of the legged robot with a fixed joint.
The final result is a 5-limbed, 18 DoF mobile robot that we
dub “The Pentapede” (Figure 1). A camera sensor is placed
at the end of the robotic arm to allow the robot to visualize
the environment.

Fig. 1. The Pentapede 18 DoF mobile robot.

B. Tracking Task

The objective is for The Pentapede to be able to track
a moving target. For our target, we use a 0.1m-radius red
sphere. The initial sphere location is randomized with x and
y coordinates sampled uniformly from an 8m sided square



centered on the robot starting position and z coordinate
sampled uniformly between 0.5m-2m. The sphere is also
initialized with a target position that is sampled from the
same distribution as the starting position, clipped at a max
distance of 4m. The ball moves towards the target position at
a speed of 0.5m/s. Once the ball reaches the target position,
a new target position is randomly selected and the process
repeats.

The task of the robot is two-fold: keep the sphere in view
of the camera, and position the robot as close to the xy
coordinates of the sphere as possible.

C. Obstacles

To make the navigation task more challenging, we add
obstacles into the environment. The obstacles, meant to
mimic trees in a forest, take the form of half-capsules with
a fixed radii and heights of 0.2m and 1.5m respectively. A
fixed number of 10 obstacles are randomly placed in the
environment with a configured minimum distance of 1.0m
separating them. An example of the tracking task in an
obstacle-filled environment can been seen in Figure 2.

Fig. 2. The Pentapede navigating a “forest” of tall, tree-like obstacles. The
robot must follow a ball that moves in a randomized trajectory, as shown
by the arrows.

D. Observation Space

Although the simulation environment supports camera
rendering, we found that this slows down the simulator
significantly by a factor of 8. To work around this, we came
up with an approach inspired by [1] that mimics detecting a
ball in an image with the idea that it could later be replaced
with image rendering by downstream fine-tuning or sim2real
transfer. We first determine if the ball lies within the field
of view of the camera. If it does, The Pentapede is told the
direction and distance of the camera to the ball. If it does
not, The Pentapede does not know where the ball is located.
This assumption is justified because learning to detect the
location of a red ball in a camera image could easily be done
independently with segmentation or a CNN, and the distance
could be determined using an RGB-D camera. Because

object detection is not the focus of the projection, we used
our simplified approach throughout training.

To determine if the ball lies in the camera field of view
(FoV), we make a further simplifying assumption that the
field of view is conical, such that the inequality in Equation 1
holds true for objects in view, where cd is a unit vector along
the camera axis, θFoV is the angular width of the camera field
of view, and bd is a unit vector pointing from the camera to
the ball. We use a FoV of 80◦.

α =

[
cd · bd ≥ cos

(
θFoV

2

)]
(1)

We assume that obstacles are transparent and the agent
can see the ball through the obstacles. We also assume that
the agent knows where each obstacle in the environment is
located relative to its pose. These assumptions were made
for simplicity. The task and environment is already fairly
complicated as the environment and paths of the ball are
randomized each episode. Given more time, we would like
to include occluding the sphere from view when behind
obstacles and needing to detect obstacle positions with the
camera.

Therefore, the observation space of our agent consists of α
from Equation 1, the displacement of the ball with respect to
the camera (if α = 1, otherwise 0), the displacement of the
ball with respect to the base of the agent (if α = 1, otherwise
0), the displacement of all the trees with respect to the base of
the agent, the previous actions taken, and the linear velocity,
angular velocity, joint positions, and joint velocities of the
agent, resulting in an observation space of size (100). As
well, all of the observations are in the coordinate frame of
the agent and not the world. This is to make it so that The
Pentapede need not know its position in the environment in
order to act properly.

In the future, we also would like to add temporal infor-
mation into the observation space. We believe adding more
previous actions and previous sphere positions will improve
the robot’s ability to search for the object.

E. Action Space and Rewards

The action space of our agent is the rotation angle of the
joints. It is absolute rotation angle, not a delta. In the future,
we plan on evaluating the advantages of using absolute vs
delta. All actions are clipped to the range of [-1, 1]. The
legged joints are then scaled to a rotation between [−π

2 , π
2 ],

whereas the arm joints are scaled to
• waist: [−π, π]
• shoulder: [−1, 1]
• elbow: [−1, 1]
• forearm roll: [−π, π]
• wrist angle: [−1, 1]
• wrist rotate: [−1, 1]
The reward function consists of a reward for both camera

direction error and position error. Camera direction error is
the error between the camera direction cd and the direction
between the camera and the ball bd (Figure 3). Position error



is the error between the XY coordinates of the base of the
robot rp and the ball bp. Our reward function is

r =
α

1 + ∥bd − cd∥2
· sdir +

α

1 + ∥bp − rp∥2
· spos (2)

where sdir, and spos are tuned hyperparameters, which we
set as 0.005 and 2.0 respectively. This is because we found
the agent learned how to set the camera direction a lot more
easily than navigating to the correct position, and we want to
favor moving closer to the ball as that is the overall objective.
α is from Equation 1 and represents if the ball is in the field
of view of the camera; the reward is 0 if it cannot see the
ball. The reward function is always greater than or equal to
0, which ensures that the robot will learn to stand in order
to maximize episode length, since episodes terminate early
if the robot falls.

Fig. 3. Example camera direction error. Green line indicates the desired
direction between camera and ball, blue line indicates direction camera
is facing. Left image shows poor performance, right image shows strong
performance.

F. Training

1) Training Phases: We divide our training process into
two phases. In the first phase, the robot learns to locate
and approach a stationary ball (with randomized position
to prevent over-fitting). Once the policy is working well,
we then fine-tune on the more difficult task of tracking and
following a moving ball. Training to follow a moving ball
leads to a noisy reward signal as the ball will at different
times be moving towards or away from the robot, regardless
of the robot’s current actions. Thus initially training on a
stationary ball helps the policy more quickly learn the basic
skills of locomotion and camera tracking before the more
challenging task is introduced.

2) Advantage Mixing: From [6], we experiment with
advantage mixing to learn the optimal policy. We anticipate
directly learning a unified policy for all joints will be a
challenging task, as the overall goal of moving towards a
target with the legs while keeping the target centered with the
end-effector is quite complex. Advantage mixing will break
down the problem by first incentivizing the robot to learn
end-effector position and locomotion tasks independently,
followed by the joining of the objectives into a single coupled
task.

One difference between our implementation and the archi-
tecture in [6] is that for our baseline, we will not need to
use regularized online adaptation. This is because Sim2Real
is not in the scope of our project, and there is no need to
train an adaptation module to learn environment encodings.
Therefore, we will not be using an adaptation or encoder
module and will instead directly feed states, actions, and
obstacle locations directly into the policy network.

G. Simulation Environment

For simulation, we use Isaac Gym [9], NVIDIA’s physics
simulation environment for reinforcement learning. Isaac
Gym is GPU optimized and allows for running tens of
thousands of simulation environments in parallel, which we
can take advantage of when training our simulated robot. For
our reinforcement learning algorithm, we are using PPO as
it was used in both [6] and [1] and is a common state-of-
the-art off-policy algorithm. An example of the parallelized
environments can be seen in Figure 4.

Fig. 4. Simultaneous training of hundreds of Pentapede robots in parallel
using Isaac Gym.

IV. EXPERIMENTS

After successful implementation of our approach from
Section III, we conduct several trials to evaluate the benefits
and shortcomings of our design decisions. First we eval-
uate the performance of our approach in an obstacle-free
environment. This is to confirm that The Pentapede is able
to accomplish the simpler task of tracking a ball without
obstacles.

Then, we add the obstacles as described in Section III-C.
With the obstacles present, we investigate the effect advan-
tage mixing has on learning a policy with the mobile arm. We
evaluate the robot’s performance trained with and without
advantage mixing to determine if it results in improved
training time or if the robot is able to effectively learn a
complex joint policy without it.

For both obstacle-free and obstacle-present experiments,
we try to ascertain the value of placing a camera on a mobile
arm on top of a legged robot, compared to a system with a
fixed camera as in [1]. To do this, we modify the setup to
have the camera at a fixed pose and orientation relative to



the robot by locking the arm joints, and evaluate how much
worse the robot is at tracking the target, or if it is able to
track it just as well.

For all experiments, we train the agent using PPO with
2048 simultaneous environments and a batch size of 2048.
The remaining hyper-parameters are left at the defaults for
the ANYmal example in [10].

Different experiments were trained for a different number
of iterations which depending on when the the returned
rewards stopped improving.

All videos of our qualitative results can
be found at the playlist https://www.
youtube.com/watch?v=oKGWNEpsKVY&list=
PL3E8TLYJg57LuGxonWckZubRBXV1HJqku,
as well as the folder https://drive.
google.com/drive/folders/1n6e6t_
YuEqDD3CrWywXEMfGBqLL9GSDy. Our source code
is available at https://github.com/hfreecmu/
IsaacGymEnvs.

A. Obstacle-Free Experiments

The returned rewards for the obstacle-free experiments
can be seen in Figure 5 and Figure 6. Both quantitatively
and qualitatively, the mobile arm outperforms the fixed arm,
validating our approach in this simple environment.

Note: The reward function we used for these experiments
is different than that presented in Eq. 2. It is the reward
function used for our midterm report as described in Eq. 3,
where α, β, sdir, and spos are tuned hyperparameters, which
we had as as 0.5, 0.1, 1, and 5 respectively. Because training
takes a while, we ran out of time to test both with the updated
reward function.

r = e−
∥bd−cd∥2

α · sdir + e−
∥bp−rp∥2

β · spos (3)

Fig. 5. CAPTION

As an additionally validity check for our design choices,
we run tests fixing the ball height above the robot. While the
experiment with the movable arm runs fine, the performance

Fig. 6. CAPTION

of the fixed arm is significantly worse since the ball is above
the robot and out of the line of sight of the camera. The robot
learns to flip itself on its back to see the ball, and mobility
is impaired (Figure 7).

Fig. 7. When the camera is mounted on the robot body at a downward
angle, the robot learns to flip itself over in order to continue tracking the
ball.

B. Obstacle Experiments

To train the robot to follow the ball, we train a network
on an initial stationary ball, once again using 2048 parallel
environments and PPO. After 1500 epochs we add linear
velocity to the ball. The robot successfully learns to follow
the ball while keeping it in sight (Figure 8).

We compare three policies: eye-in-hand (Figure 9), eye-in-
hand with advantage mixing (Figure 10), and fixed camera
(Figure 11). For these trials, the eye-in-hand and fixed
camera policies were not provided any reward for the camera
direction, only for distance to the target. As shown in the
training graphs, both eye-in-hand and fixed camera strategies
reach a similar level of performance of around 200 reward
on the moving ball task. In the supplemental videos, we see
that the fixed arm policy learns to spin in a circle until the
ball becomes visible, while the eye-in-hand policy searches

https://www.youtube.com/watch?v=oKGWNEpsKVY&list=PL3E8TLYJg57LuGxonWckZubRBXV1HJqku
https://www.youtube.com/watch?v=oKGWNEpsKVY&list=PL3E8TLYJg57LuGxonWckZubRBXV1HJqku
https://www.youtube.com/watch?v=oKGWNEpsKVY&list=PL3E8TLYJg57LuGxonWckZubRBXV1HJqku
https://drive.google.com/drive/folders/1n6e6t_YuEqDD3CrWywXEMfGBqLL9GSDy
https://drive.google.com/drive/folders/1n6e6t_YuEqDD3CrWywXEMfGBqLL9GSDy
https://drive.google.com/drive/folders/1n6e6t_YuEqDD3CrWywXEMfGBqLL9GSDy
https://github.com/hfreecmu/IsaacGymEnvs
https://github.com/hfreecmu/IsaacGymEnvs


Fig. 8. Two simulated robots approaching their respective balls while
maintaining camera tracking in a field of obstacles.

for the ball by rotating the arm, then aligns the body to the
ball after it is located. The fixed camera policy also learns to
execute more of a bounding motion while searching for the
ball, while the eye-in-hand policy uses a more careful scuttle.
This scuttling may be an effort to keep the arm stable, which
is not as important during the searching phase.

One issue that both the eye-in-hand and fixed camera
policies face is a failure to avoid collisions with obstacles. In
both cases, the robot will frequently collide with an obstacle
in an effort to move in a direct line towards the target. We
are hopeful that this issue will eventually resolve itself with
additional training time.

In contrast, the advantage mixing approach never learns
to follow the ball, even when stationary. We attribute this
to a poor breakdown of rewards between the arm and legs.
Specifically, the legs are unaware of the ball direction until
the arm learns to track the ball using the camera. Thus during
the early stages of training when advantage mixing is in
effect, the legs have no easy way to improve their reward.

To summarize, our initial hypotheses that advantage mix-
ing would outperform eye-in-hand, and eye-in-hand would
outperform fixed camera, were both invalidated. Instead, we
saw worse performance for advantage mixing, and equal
performance between the other two policies. We attribute this
in part to an insufficiently challenging environment: without
the presence of occlusions, the robot is able to solve the
task effectively even with a fixed camera placement. We
believe the addition of occlusions to the environment will
better allow the eye-in-hand approach to differentiate itself.

Fig. 9. Reward over the course of training for an eye-in-hand camera
without advantage mixing. The first and second phase of training (after a
crash) keep the ball stationary, while the third phase has a moving ball. The
camera direction reward was not used for this trial.

Fig. 10. Reward over the course of training for an eye-in-hand camera
with advantage mixing. The first phase of training keeps the ball stationary,
after which the trial was terminated due to lack of progress.

Fig. 11. Reward over the course of training for a fixed camera position
relative to the robot. The first phase of training keeps the ball stationary,
while the second phase has a moving ball. The camera direction reward was
not used for this trial.

V. CONCLUSION

In this project, we successfully trained a mobile robot to
locate and follow a moving target. To do this, the policy
learned several requisite skills, including searching for the
ball, tracking the ball with the camera, and scuttling in the
direction of the ball. However, although the robot is able
to operate in the presence of obstacles, it still frequently
collides with them instead of altering its route. Furthermore,
while the use of a manipulator enabled more precise camera
tracking, the robot with a fixed camera placement was still
able to search for and follow the ball with a similar level
of effectiveness, although it learned qualitatively different
techniques for doing so. This suggests the need to increase
the difficulty of the environment, so that the eye-in-hand
approach can more easily distinguish itself.

To that end, one direction for future research is to add
environmental occlusions to the simulation, such that the
robot cannot see the ball when obstacles are in the way.
This will prevent the arm alone from being able to locate
the ball, and instead require the robot to use its legs to
move around when searching for the ball. Another area
for investigation is providing the policy with memory of
its previous steps. This would allow the robot to rule out
locations it has already searched when trying to find the
ball, and also potentially improve its ability to navigate the



obstacle-filled environment. Finally, there is further work
needed to transfer the approach from sim2real. This includes
supervised learning to recondition the policy using the raw
camera image as in [1], as well as using regularized online
adaptation as in [6] to adapt to differences between the
simulated and real environments.

REFERENCES

[1] A. Agarwal, A. Kumar, J. Malik, and D. Pathak, “Legged locomo-
tion in challenging terrains using egocentric vision,” in 6th Annual
Conference on Robot Learning, 2022.

[2] M. C. Capolei, H. Wu, N. A. Andersen, and O. Ravn, “Positioning the
laparoscopic camera with industrial robot arm,” in 3rd International
Conference on Control, Automation and Robotics (ICCAR), pp. 138–
143, 2017.

[3] T. Dewi, P. Risma, Y. Oktarina, and S. Muslimin, “Visual servoing
design and control for agriculture robot; a review,” in International
Conference on Electrical Engineering and Computer Science (ICE-
COS), pp. 57–62, 2018.

[4] D. Kragic, H. I. Christensen, et al., “Survey on visual servoing for ma-
nipulation,” Computational Vision and Active Perception Laboratory,
Fiskartorpsv, vol. 15, p. 2002, 2002.

[5] G. Xin, F. Zeng, and K. Qin, “Loco-manipulation control for arm-
mounted quadruped robots: Dynamic and kinematic strategies,” Ma-
chines, vol. 10, no. 8, 2022.

[6] Z. Fu, X. Cheng, and D. Pathak, “Learning a unified policy for
whole-body control of manipulation and locomotion,” in 6th Annual
Conference on Robot Learning, 2022.

[7] “Meet ANYmal X, your ex-proof robotic inspector for the oil &
gas and chemicals industries.” https://www.anybotics.com/
anymal-autonomous-legged-robot/.

[8] S. Wiznitzer, L. Schmitt, and M. Trossen, “inter-
botix ros manipulators.” https://github.com/Interbotix/
interbotix_ros_manipulators.

[9] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Mack-
lin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, and G. State, “Isaac
Gym: High performance GPU-based physics simulation for robot
learning,” 2021.

[10] G. State and ynarang, “Reinforcement Learning Examples.” https:
//github.com/NVIDIA-Omniverse/IsaacGymEnvs/
blob/main/docs/rl_examples.md.

https://www.anybotics.com/anymal-autonomous-legged-robot/
https://www.anybotics.com/anymal-autonomous-legged-robot/
https://github.com/Interbotix/interbotix_ros_manipulators
https://github.com/Interbotix/interbotix_ros_manipulators
https://github.com/NVIDIA-Omniverse/IsaacGymEnvs/blob/main/docs/rl_examples.md
https://github.com/NVIDIA-Omniverse/IsaacGymEnvs/blob/main/docs/rl_examples.md
https://github.com/NVIDIA-Omniverse/IsaacGymEnvs/blob/main/docs/rl_examples.md

	Introduction
	Prior Work
	Approach
	Mobile Robot
	Tracking Task
	Obstacles 
	Observation Space
	Action Space and Rewards
	Training
	Training Phases
	Advantage Mixing

	Simulation Environment

	Experiments
	Obstacle-Free Experiments
	Obstacle Experiments

	Conclusion
	References

